Skip to main content

Diketahui $f(p)=\frac{1 - p}{ p}$ untuk setiap bilangan real $p \neq 0$. Jika $g : R \Rightarrow R$ adalah... maka fungsi invers $g(p)$ adalah ...



1.  Diketahui $f(p)=\frac{1 - p}{ p}$ untuk setiap bilangan real $p \neq 0$. Jika $g : R \Rightarrow R$  adalah suatu fungsi sehingga $(gof)(p)=g(f(p))=2p+1$, maka fungsi invers $g(p)$ adalah ...
      A.  $\frac{p - 3}{p + 1}$
      B.  $\frac{p - 3}{p - 1}$
      C.  $\frac{p + 1}{p - 3}$ 
      D.  $\frac{p - 3}{1 - p}$
      E.  $\frac{p - 1}{3 - p}$

Jawaban :  
      Materi yang perlu kita ingat.
           -------------------------------------------------------------------------------------------------------------------------
  • Jika $f(p)=\frac{ap+b}{cp+d}$ maka $f^{-1} (p) = \frac{-dp +d}{cp - a}=\frac{dp=b}{-cp+a}$
  • Jika $gof(p)=kp + c$ maka $g(p)=k(f^{-1} (p)) + c$, setiap nilai p pada hasil diganti dengan $f^{-1} (p)$.
           ------------------------------------------------------------------------------------------------------------------------
       $f(p)=\frac{1 - p}{p}=\frac{-p + 1}{p + 0}$  maka $f^{-1} (p)=\frac{0p+1}{p+1} = \frac{1}{p+1}$

       $gof(p)=2p+1$  maka $g(p)=2(\frac{1}{p+1}) + 1$
       $g(p)=\frac{2}{p+1} + 1(\frac{p+1}{p+1}) = \frac{p+3}{p+1}$
       $g(p)=\frac{p+3}{p+1}$ maka $g^{-1} (p)=\frac{-p+3}{p-1} = \frac{p-3}{-p+1}$
       $g^{-1} (p)= \frac{p-3}{-p+1} = \frac{p-3}{1-p}$
      
       jadi invers $g(p)$ adalah $\frac{p-3}{1-p}$

Kembali ke SOAL? klik SOAL PART I
************************************************************************************************************
English 

    $f(p)=\frac{1 - p}{ p}$ for each real number $p \neq 0$. If $g : R \Rightarrow R$ is
     a function so that $(gof)(p)=g(f(p))=2p+1$, then the inverse function $g(p)$ is ...
      A.  $\frac{p - 3}{p + 1}$
      B.  $\frac{p - 3}{p - 1}$
      C.  $\frac{p + 1}{p - 3}$ 
      D.  $\frac{p - 3}{1 - p}$
      E.  $\frac{p - 1}{3 - p}$
     
      Answer
      Remember this,
  -------------------------------------------------------------------------------------------------------------------------
  • if$f(p)=\frac{ap+b}{cp+d}$ then $f^{-1} (p) = \frac{-dp +d}{cp - a}=\frac{dp=b}{-cp+a}$
  • if $gof(p)=kp + c$ then $g(p)=k(f^{-1} (p)) + c$, each p value on the result is replaced by $f^{-1} (p)$.
           ------------------------------------------------------------------------------------------------------------------------
       $f(p)=\frac{1 - p}{p}=\frac{-p + 1}{p + 0}$  then $f^{-1} (p)=\frac{0p+1}{p+1} = \frac{1}{p+1}$

       $gof(p)=2p+1$  then $g(p)=2(\frac{1}{p+1}) + 1$
       $g(p)=\frac{2}{p+1} + 1(\frac{p+1}{p+1}) = \frac{p+3}{p+1}$
       $g(p)=\frac{p+3}{p+1}$ then $g^{-1} (p)=\frac{-p+3}{p-1} = \frac{p-3}{-p+1}$
       $g^{-1}= \frac{p-3}{-p+1} = \frac{p-3}{1-p}$

      so inverse $g(p)$ is $\frac{p-3}{1-p}$

PEMBAHASAN SOAL FUNGSI KOMPOSISI DAN INVERS TAHUN 2007   SBMPTN

Comments

Popular posts from this blog

DIAGRAM PENCAR (SCATTER PLOT)

Capaian Pembelajaran :  Menggunakan diagram pencar untuk menyelediki dan menjelaskan hubungan antara dua variabel numerik Tujuan Pembelajaran :      1.  Menyajikan diagram pencar dari sepasang data      2.  Menjelaskan hubungan antara dua variabel numerik antara dua variabel Pengertian Diagram Pencar       Diagram pencar merupakan penyajian data dalam bentuk penyebaran titik-titik pada diagram kartesius yang berguna untuk menunjukkan ada atau tidaknya hubungan/korelasi antara dua variabel kuantitatif yang disebut dengan data bivariat. Jenis – jenis varibel variabel 1.          Variabel Bebas merupakan variabel yang memberikan pengaruh terhadap variabel lainnya. istilah lain dari variabel bebas yaitu variabel independen/variabel stimulus/ variabel input/variabel predictor/variabel anteseden yang disimbolkan dengan X   2.        Variabel terikat merupa...

SOAL AKM TRANSFORMASI MATRIKS

 1.   Tata mendapatkan tugas dari Yuliana untuk menentukan besaran translasi yang dilakukannya jika posisi awalnya dititik $(4,2)$ dan posisi akhirnya$(-1,-2)$  berapakah besaran translasinya? Jawab; Pososi Akhir = posisi awal + besaran translasi $\left(\begin{matrix}-1\\-2\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)+\left(\begin{matrix}a\\b\end{matrix}\right)$ $4+a=-1$ maka $a=-1-4=-5$ $2+b=-2$ maka $b=-2-2=-4$ jadi besaran translasinya $(-5,-4)$ 2.   Persamaan parabola $y=2x^2+6$ ditranslasikan oleh matriks $\left(\begin{matrix}1\\3\end{matrix}\right)$ akan mempunyai bayangan parabola dengan titik puncak …. Jawab; $\left(\begin{matrix}x'\\y'\end{matrix}\right)=\left(\begin{matrix}x\\y\end{matrix}\right)+\left(\begin{matrix}1\\3\end{matrix}\right)$ $x+1=x'$ maka $x=x'-1$ .....(1) $y+3=y'$ maka $y=y'-3$ ....(2) substitusi (1) dan (2) ke $y=2^2+6$ menjadi $y'-3=2(x'-1)^2+6$ $y'-3=2(x'^2-2x'+1)+6$ $y'-3=2x'^2-4x'...

SOAL AKM MATRIKS

  7.   Jawab; a. BENAR B. Salah (seharusnya sama dengan g bukan h) C. Salah (seharusnya kotak silang bukan kotak dua) D. Salah E.  Salah 8.   Jawab; $A_{2\times 2} \times B_{2\times 2}$ karena banyak kolom A sama dengan banyak baris B (dapat dikalikan)  $B_{2\times 2} \times A_{2\times 2}$ karena banyak kolom B sama dengan banyak baris A (dapat dikalikan) $A_{2\times 2} \times C_{3\times 2}$ karena banyak kolom A tidak sama dengan banyak baris C (tida dapat dikalikan) $C_{3\times 2} \times A_{2\times 2}$ karena banyak kolom C sama dengan banyak baris A (dapat dikalikan) $B_{2\times 2} \times C_{3\times 2}$ karena banyak kolom B tidak sama dengan banyak baris C ( tidak dapat dikalikan) $C_{3\times 2} \times B_{2\times 2}$ karena banyak kolom A sama dengan banyak baris B (dapat dikalikan) jadi banyak perkalian yang dapat dilakukan adalah 6 9.   Matriks $L=\left(\begin{matrix}a&b&c\\1&2&3\\d&e&f\end{matrix}\right)$, jika ...