Skip to main content

Diketahui $f(x)=\frac{3x}{2x-1}$ dan $g(x)=\frac{2x}{3x+1}$. $(f o g)(x) =$ ....

 Diketahui $f(x)=\frac{3x}{2x-1}$ dan $g(x)=\frac{2x}{3x+1}$. $(f o g)(x) =$ ....

A.  $\frac{6x}{11x-1}$

B.  $\frac{6x}{11x+1}$

C.  $\frac{6x}{x-1}$

D.  $\frac{6x}{1-x}$

E.  $\frac{6x}{-x-1}$

Jawab; E

$(f o g)(x)=f(g(x))$ berarti setiap x yang ada pada f(x) diubah dengan g(x).

$f\left(\frac{2x}{3x+1}\right)=\frac{3\left(\frac{2x}{3x+1}\right)}{2\left(\frac{2x}{3x+1}\right)-1}$

                 $=\frac{\frac{6x}{3x+1}}{\frac{4x}{3x+1}-1}$

                 $=\frac{\frac{6x}{3x+1}}{\frac{4x}{3x+1}-\frac{1(3x+1)}{3x+1}}$

                 $=\frac{\frac{6x}{3x+1}}{\frac{4x-3x-1}{3x+1}}$

                 $=\frac{\frac{6x}{3x+1}}{\frac{-x-1}{3x+1}}$

                 $=\frac{6x}{-x-1}$


Sumber Soal : Mandiri Matematika Jilid 1 untuk SMA/MA Kelas X Kelompok Wajib  Halaman 93 No soal 77.

Comments

Popular posts from this blog

DIAGRAM PENCAR (SCATTER PLOT)

Capaian Pembelajaran :  Menggunakan diagram pencar untuk menyelediki dan menjelaskan hubungan antara dua variabel numerik Tujuan Pembelajaran :      1.  Menyajikan diagram pencar dari sepasang data      2.  Menjelaskan hubungan antara dua variabel numerik antara dua variabel Pengertian Diagram Pencar       Diagram pencar merupakan penyajian data dalam bentuk penyebaran titik-titik pada diagram kartesius yang berguna untuk menunjukkan ada atau tidaknya hubungan/korelasi antara dua variabel kuantitatif yang disebut dengan data bivariat. Jenis – jenis varibel variabel 1.          Variabel Bebas merupakan variabel yang memberikan pengaruh terhadap variabel lainnya. istilah lain dari variabel bebas yaitu variabel independen/variabel stimulus/ variabel input/variabel predictor/variabel anteseden yang disimbolkan dengan X   2.        Variabel terikat merupa...

SOAL AKM TRANSFORMASI MATRIKS

 1.   Tata mendapatkan tugas dari Yuliana untuk menentukan besaran translasi yang dilakukannya jika posisi awalnya dititik $(4,2)$ dan posisi akhirnya$(-1,-2)$  berapakah besaran translasinya? Jawab; Pososi Akhir = posisi awal + besaran translasi $\left(\begin{matrix}-1\\-2\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)+\left(\begin{matrix}a\\b\end{matrix}\right)$ $4+a=-1$ maka $a=-1-4=-5$ $2+b=-2$ maka $b=-2-2=-4$ jadi besaran translasinya $(-5,-4)$ 2.   Persamaan parabola $y=2x^2+6$ ditranslasikan oleh matriks $\left(\begin{matrix}1\\3\end{matrix}\right)$ akan mempunyai bayangan parabola dengan titik puncak …. Jawab; $\left(\begin{matrix}x'\\y'\end{matrix}\right)=\left(\begin{matrix}x\\y\end{matrix}\right)+\left(\begin{matrix}1\\3\end{matrix}\right)$ $x+1=x'$ maka $x=x'-1$ .....(1) $y+3=y'$ maka $y=y'-3$ ....(2) substitusi (1) dan (2) ke $y=2^2+6$ menjadi $y'-3=2(x'-1)^2+6$ $y'-3=2(x'^2-2x'+1)+6$ $y'-3=2x'^2-4x'...

SOAL AKM MATRIKS

  7.   Jawab; a. BENAR B. Salah (seharusnya sama dengan g bukan h) C. Salah (seharusnya kotak silang bukan kotak dua) D. Salah E.  Salah 8.   Jawab; $A_{2\times 2} \times B_{2\times 2}$ karena banyak kolom A sama dengan banyak baris B (dapat dikalikan)  $B_{2\times 2} \times A_{2\times 2}$ karena banyak kolom B sama dengan banyak baris A (dapat dikalikan) $A_{2\times 2} \times C_{3\times 2}$ karena banyak kolom A tidak sama dengan banyak baris C (tida dapat dikalikan) $C_{3\times 2} \times A_{2\times 2}$ karena banyak kolom C sama dengan banyak baris A (dapat dikalikan) $B_{2\times 2} \times C_{3\times 2}$ karena banyak kolom B tidak sama dengan banyak baris C ( tidak dapat dikalikan) $C_{3\times 2} \times B_{2\times 2}$ karena banyak kolom A sama dengan banyak baris B (dapat dikalikan) jadi banyak perkalian yang dapat dilakukan adalah 6 9.   Matriks $L=\left(\begin{matrix}a&b&c\\1&2&3\\d&e&f\end{matrix}\right)$, jika ...